вторник, 18 июня 2013 г.

Горизонтальное и вертикальное масштабирование. Взгляд со стороны бизнес приложений.


К концу 2012 года более 50% приложений работающих на х86 платформе виртуализированы. Вместе с тем виртуализировано только 20% бизнес критических приложений .

Это из-за того что ИТ отделы не доверяют платформам виртуализации? Считают ли они платформы виртуализации не достаточно стабильными для поддержки работы критически важных приложений?

За последние 10 лет VMware доказала что виртуализация это уже реальность, и, фактически, виртуализированные приложения часто более стабильны, когда работают на инфраструктуре под управлением VMware.

Тогда если доверие или стабильность не являются проблемой в чём же причина того что ИТ отделы еще не виртуализировали оставшиеся приложения?



Scale out
Scale out или горизонтальное масштабирование - добавление новых ресурсов в инфраструктуру, например, серверов в кластер. 

Так как цены продолжают падать, а производительность расти то дешёвые, commodity (широкого потребления) сервера являются идеальным решением для горизонтального масштабирования, и могут быть собраны в большие кластера для объединения вычислительных ресурсов.

Последние семь лет архитекторы инфраструктур на VMware молились на горизонтальное масштабирование. Кто-то может аргументировать за использование именного этого подхода, но он тоже имеет свои нюансы, и всё зависит от требований бизнеса. Плюс горизонтального масштабирования в том, что commodity сервера дёшевы, и в случае выхода сервера из строя это влияет на небольшое количество ВМ. Минус в бОльших затратах на лицензии на vSphere, большие требования к площади ЦОД, и обычно такие commodity сервера не обладают большими вычислительными ресурсами.

Scale up
Вертикальное масштабирование - добавление вычислительных ресурсов в какой-то уже используемый сервер. Обычно это процессоры или оперативная память.

Обычно такие сервера довольно мощные - с поддержкой 4 процессоров и 512ГБ памяти. Кроме того встречаются системы с 8 процессорами и 1ТБ памяти, а некоторым повезло увидеть даже 16-ти процессорные сервера с 4ТБ памяти. И нет, это не мейнфреймы или что-то типа того, это сервера на основе классической х86 архитектуры.

Переход ко второй волне виртуализации, которая обеспечивает гибкость предоставляемую данной технологией для бизнес критических приложений, оказывает сегодня огромное давление на используемые сегодня инфраструктуры VMware из-за следующих проблем:

  • Недостаточные возможности по масштабированию. Нагрузки с высокими требованиями к объёму вычислительных ресурсов являются проблемой из-за ограниченного объёма ресурсов доступных с дешёвыми commodity серверами.
  • Недостаточная надёжность. Commodity оборудование или аппаратное обеспечение использующее такие компоненты может быть менее надёжным. Проблему надёжности можно решить с помощью функций о которых я расскажу в следующих статьях.
  • Увеличение сложности управления и рост операционных расходов. Легче управлять 100 серверами, а не 1000, ну и, как следствие, 10 серверами управлять проще чем 100. Тоже самое касается и операционных расходов - 10 серверов гораздо дешевле поддерживать чем 100.
Вертикальное масштабирование отлично подходит для бизнес критических приложений с их огромными требованиями к ресурсам. Привет, Monster VM! Все эти прожорливые критичные базы данных, огромные ERP системы, системы аналитики больших данных, JAVA приложения и так далее и тому подобное получат прямую выгоду от вертикального масштабирования.

С выходом vSphere 5 количество ресурсов, доступных одной ВМ выросло в 4 раза.



А с выходом vSphere 5.1 монструозные ВМ могут быть еще монструознее.

 Для того чтобы vSphere 5.1 могла запустить ВМ-монстра планировщику необходимо иметь и спланировать запуск потоков на 64 физических процессорах. Не так много серверов, которые могут поддерживать столько ядер, а серверов с поддержкой 16 сокетов и 160 ядер и того меньше.

Всего существует два типа вертикального масштабирования серверов: glueless и glued. На русский язык эти слова переводятся так: без интегрирующих технологий и с интегрирующими технологиями, соответственно.

Glueless архитектура
Данная архитектура была разработана в Intel, и представлена в Intel Xeon E7.

Для связи между устройствами ввода-вывода, сетевыми интерфейсами и процессорам используется специально разработанная шина QPI.

В серверах с 4-мя процессоров все они соединяются между собой напрямую через эту шину. Glueless процессор использует один из каналов для подключения процессора к интерфейсам ввода-вывода, а остальные три для подключения к соседним процессорам.

В 8-ми процессорном сервере каждый процессор напрямую подключается к трём соседним, и через другой процессор к другим четырём.

Преимущества такой архитектуры:
  • Нет необходимости в специальной разработке или специализации у производителя серверов
  • Любой производитель серверов может выпускать 8-ми процессорные сервера
  • Снижается стоимость как 4-ёх так и 8-ми процессорного сервера
Недостатки:
  • Общая стоимость владения растёт при горизонтальном масштабировании
  • Архитектура ограничена 8-ми процессорными серверами
  • Тяжело поддерживать целостность кэша при увеличении сокетов
  • Нелинейный рост производительности
  • Соотношение цены к производительности падает
  • Неоптимальная эффективность при использовании больших ВМ
  • Вплоть до 65% пропускной способности шины уходит на широковещательные сообщения болтливого протокола QPI
В чём же причина болтливости протокола QPI? Для того чтобы достичь целостности процессорного кэша каждая операция на чтение должна быть реплицирована на все процессоры. Это можно сравнить с широковещательным пакетом в IP сети. Каждый процессор должен проверить у себя затребованную строку памяти, и в случае использования последней версии данных предоставить её. В случае если актуальные данные находятся в другом кэше протокол QPI с минимальными задержками копирует данную строку памяти из удалённого кэша. Таким образом на репликацию каждой операции чтения тратиться пропускная способность шины и такты кэша, которые могли бы использоваться для передачи полезных данных.

Основные приложения, производительность которых страдает от недостатков протокола QPI это Java приложения, большие БД, чувствительные к задержкам приложения.

Результатом вертикального масштабирования должно быть отсутствие бутылочного горлышка, иначе данная архитектура становится бессмысленной. Таким образом, линейность увеличения производительности должна соответствовать линейности добавления ресурсов.

Glued архитектура
Для решения описанных выше проблем разработчики аппаратного обеспечения разработали glued архитектуру. Данная архитектура использует внешний контроллер нод для организации взаимосвязи островков QPI - кластеров процессоров.


Intel QPI предлагает специальное масштабируемое решение - eXternal Node-Controllers (или XNC), практическая реализация которого разрабатывается сторонними OEM компаниями. Внешний контроллер нод, используемый начиная с Intel Xeon E7-4800, со встроенным контроллером памяти, включает в себя также систему Cache Coherent Non-Uniform Memory Access (ccNUMA) задача которой отслеживать актуальность данных в каждой строке памяти процессорного кэша были актуальные данные.

Задержки между процессором и памятью в ccNUMA зависят от местоположения этих двух компонентов в отношении друг друга, в результате XNC контроллеры становятся критически важным компонентом сервера, и очень небольшое количество производителей серверов могут разработать сервера с возможностью вертикального масштабирования.


Оригинал: deinoscloud.wordpress.com

Комментариев нет:

Отправить комментарий